

WJEC England GCSE Physics 2 - Particle Model of Matter

Flashcards

This work by PMT Education is licensed under CC BY-NC-ND 4.0

What is the definition of density? State the relevant equation with units.

What is the definition of density? State the relevant equation with units.

- The mass per unit volume of a material
- ρ=m/v
- Density (kg/m³), Mass (kg), Volume (m³)

State the different states of matter in order of smallest to largest density of atoms.

State the different states of matter in order of least to most density of atoms.

- Least dense: Gas
- Liquid
- Most dense: Solid

What is always conserved when a substance undergoes a change of state?

What is always conserved when a substance undergoes a change of state?

Mass

Describe the motion of molecules in a gas.

Describe the motion of molecules in a gas.

They are in constant random motion.

What factor affects the average kinetic energy of gas molecules?

What factor affects the average kinetic energy of gas molecules?

- The temperature of the substance.
- The higher the temperature, the higher the average kinetic energy of the molecules.

What effect does increasing temperature have on the pressure of a gas (when held at constant volume)?

What effect does increasing temperature have on the pressure of a gas (when held at constant volume)?

Pressure of the gas will increase as its temperature increases.

Why does pressure increase as temperature increases, at a constant volume?

Why does pressure increase as temperature increases, at a constant volume?

- Kinetic energy of molecules increases.
- Collisions between molecules becomes more frequent.
- Greater rate of change of momentum.
- Greater force and therefore pressure.

If gas A is at a low pressure, and gas B is at a high pressure, what can be said about the rate of collisions in each gas?

If gas A is at a low pressure, and gas B is at a high pressure, what can be said about the rate of collisions in each gas?

- There are more collisions per second in gas A than in gas B.
- The rate of collisions is higher in A.

Describe the force that the pressure of a gas exerts on the walls of its container.

Describe the force that the pressure of a gas exerts on the walls of its container.

- The net force acts at right-angles to the container's surface.
- The force increases as pressure increases.

Explain how increasing the volume of a gas results in a decrease of pressure.

Explain how increasing the volume of a gas results in a decrease of pressure.

- Molecules become more spread out and so time between collisions increases.
- This is a reduced rate of collisions.
- Rate of change of momentum decreases, and so force exerted on container decreases, resulting in a lower pressure.

What can be said about the product of pressure and volume for a fixed mass of gas at a constant temperature?

What can be said about the product of pressure and volume for a fixed mass of gas at a constant temperature?

It is constant.

p V = constant

What is the unit used for pressure?

What is the unit used for pressure?

Pascal (Pa).

What increases when you do work on a gas?

What increases when you do work on a gas?

- The internal energy of the gas
- This can also lead to an increase of temperature

Why does the temperature of air inside a bike pump increase when it is pumped?

Why does the temperature of air inside a bike pump increase when it is pumped?

- Work is done on a gas when it is compressed.
- Doing work on a gas increases its internal energy, and so also the average kinetic energy of the molecules.
 - Temperature increases with an increase of average kinetic energy.

What is sublimation?

What is sublimation?

- When a substance transitions from a solid phase straight to a gas phase.
- It does not pass through liquid phase.

Describe the particle arrangement of a solid.

Describe the particle arrangement of a solid.

- Particles are closely packed together in a uniform pattern.
- Particles can vibrate but are fixed in position by strong bonds.

Describe the particle arrangement of a liquid.

Describe the particle arrangement of a liquid.

- Relatively tightly packed together.
- Particles can vibrate and move small distances relative to one another.

Describe the particle arrangement of a gas.

Describe the particle arrangement of a gas.

- Particles are free to move as they wish and have negligible bonds between each other.
- They have more kinetic energy than solids and liquids.

